Dynamic properties of Lednev's parametric resonance mechanism.
نویسنده
چکیده
This paper presents a further development of the mechanism for the detection of weak magnetic fields proposed by [Lednev (1991): Bioelectromagnetics 12:71-75]. The fraction of excited oscillator states of an unhydrated ion is studied in a dynamic model driven by the predicted (time-varying) transition probability in the presence of thermal noise and an unspecified excitation mechanism. The main results of Lednev are confirmed. In addition, I conclude that ultraharmonic and ultrasubharmonic resonances may also be observed, provided that the response time of the dynamic system is similar to the period of the oscillating magnetic field. I discuss the time scales involved in the mechanism and present theoretical constraints on these parameters. The crucial requirement for the theory's applicability is that the lifetime of the excited states of the affected ion oscillator exceeds the period of the applied magnetic field. Numerical solutions of the dynamic system are given and are shown to correspond well to theoretical expectations. The main discrepancy between the theories of Lednev and of Blanchard and Blackman [Blanchard and Blackman (1994): Bioelectromagnetics 15:217-238] appears to be due to an inconsistency in the latter paper. The general problem of robust analysis of experimental data is discussed, and I suggest a test of compliance with the Lednev model that is independent of all parameters except for the ratio of oscillating and static field strength (B1/B0) for many resonance conditions and experimental models.
منابع مشابه
The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions.
Mechanisms by which weak electromagnetic fields may affect biological systems are of current interest because of their potential health effects. Lednev has proposed an ion parametric resonance hypothesis (Lednev, 1991, Bioelectromagnetics, 12:71-75), which predicts that when the ac, frequency of a combined dc-ac magnetic field equals the cyclotron frequency of calcium, the affinity of calcium f...
متن کاملCombination Resonance of Nonlinear Rotating Balanced Shafts Subjected to Periodic Axial Load
Dynamic behavior of a circular shaft with geometrical nonlinearity and constant spin, subjected to periodic axial load is investigated. The case of parametric combination resonance is studied. Extension of shaft center line is the source of nonlinearity. The shaft has gyroscopic effect and rotary inertia but shear deformation is neglected. The equations of motion are derived by extended Hamilto...
متن کاملDynamic Response of an Axially Moving Viscoelastic Timoshenko Beam
In this paper, the dynamic response of an axially moving viscoelastic beam with simple supports is calculated analytically based on Timoshenko theory. The beam material property is separated to shear and bulk effects. It is assumed that the beam is incompressible in bulk and viscoelastic in shear, which obeys the standard linear model with the material time derivative. The axial speed is charac...
متن کاملEffects of Fluid Environment Properties on the Nonlinear Vibrations of AFM Piezoelectric Microcantilevers
Nowadays, atomic-force microscopy plays a significant role in nanoscience and nanotechnology, and is widely used for direct measurement at atomic scale and scanning the sample surfaces. In tapping mode, the microcantilever of atomic-force microscope is excited at resonance frequency. Therefore, it is important to study its resonance. Moreover, atomic-force microscopes can be operated in fluid e...
متن کاملControl of a model of DNA division via parametric resonance.
We study the internal resonance, energy transfer, activation mechanism, and control of a model of DNA division via parametric resonance. While the system is robust to noise, this study shows that it is sensitive to specific fine scale modes and frequencies that could be targeted by low intensity electro-magnetic fields for triggering and controlling the division. The DNA model is a chain of pen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioelectromagnetics
دوره 17 1 شماره
صفحات -
تاریخ انتشار 1996